首页 > 未分类 > (转)DirectX下 Viewing Frustum 的详细实现
2019
11-29

(转)DirectX下 Viewing Frustum 的详细实现

版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://xiaoxiang.blog.51cto.com/88051/26928
本文大部分内容翻译自Gil Gribb和Klaus Hartmann合写的《Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix》这篇文章,有兴趣的朋友可以搜索看下原文,里面DirectX下和OpenGL下的实现过程都说的很清楚,这里只说DirectX部分。
 
这里介绍的算法,可以直接从世界、观察以及投影矩阵中计算出Viewing Frustum的六个面。它快速,准确,并且允许我们在相机空间(camera space)、世界空间(world space)或着物体空间(object space)快速确定Frustum planes。
 
我们先仅仅从投影矩阵(project)开始,也就是假设世界矩阵(world)和观察矩阵(view)都是单位化了的矩阵。这就意味着相机位于世界坐标系下的原点,并且朝向Z轴的正方向。
 
定义一个顶点v(x y z w=1)和一个4*4的投影矩阵M=m(i,j),然后我们使用该矩阵M对顶点v进行转换,转换后的顶点为v'= (x' y' z' w'),可以写成这样:
(转)DirectX下 Viewing Frustum 的详细实现 - 第1张  | 逗分享开发经验
转换后,viewing frustum实际上就变成了一个与轴平行的盒子,如果顶点 v' 在这个盒子里,那么转换前的顶点 v 就在转换前的viewing frustum里。在Direct3D下,如果下面的几个不等式都成立的话,那么 v' 就在这个盒子里。
                                                                     -w' < x' < w'
-w' < y' < w'
0 < z' < w'
 
可得到如下结论,列在下表里:
(转)DirectX下 Viewing Frustum 的详细实现 - 第2张  | 逗分享开发经验
现在假设,我们要测试x'是否在左半空间内,根据上表,也就是判断 -w' < x' 是否成立。用我们开始提到的信息,可将不等式写成如下形式:
-( v * col4 ) < ( v * col1 )
即:
0 < ( v * col4 )  + ( v * col1 )
得到最后形式:
0 < v * ( col1 + col4 )
写到这里,其实已经等于描绘出了转换前的viewing frustum的左裁剪面的平面方程:
x * ( m14 + m11 ) + y * ( m24 + m21 )  + z * ( m34 + m31) + w * ( m44 + m41 ) = 0
当W = 1,我们可简单成如下形式:
x * ( m14 + m11 ) + y * ( m24 + m21 )  + z * ( m34 + m31) +  ( m44 + m41 ) = 0
这就给出了一个基本平面方程:
ax + by + cz + d = 0
其中a = ( m14 + m11 ) , b = ( m24 + m21 ), c = ( m34 + m31) , d  =  ( m44 + m41 )
 
ok,到这里左裁剪面就得到了。重复以上几步,可推导出到其他的几个裁剪面,具体见下表:
(转)DirectX下 Viewing Frustum 的详细实现 - 第3张  | 逗分享开发经验
需要注意的是:最终得到的平面方程都是没有单位化的(平面的法向量不是单位向量),并且法向量指向空间的内部。这就是说,如果要判断 v 在空间内部,那么6个面必须都满足ax + by + cz + d > 0
 
到目前为止,我们都是假设世界矩阵( world )和观察矩阵( view )都是单位化了的矩阵。但是,本算法并不想受这种条件的限制,而是希望可以在任何条件下都能使用。实际上,这也并不复杂,并且简单得令人难以置信。如果你仔细想一下就会立刻明白了,所以我们不再对此进行详细解释了,下面给出3个结论:
1. 如果矩阵 M 等于投影矩阵 P ( M = P ),那么算法给出的裁剪面是在相机空间(camera space)
 
2. 如果矩阵 M 等于观察矩阵 V 和投影矩阵 P 的组合( M = V * P ),那么算法给出的裁剪面是在世界空间(world space)
 
3.如果矩阵 M 等于世界矩阵 W,观察矩阵 V 和投影矩阵 P 的组合( M = W* V * P ),呢么算法给出的裁剪面是在物体空间(object space)
 
好,到此为止,理论知识就全部说完了,下面给出具体的实现代码:
===============================Frustum.h==============================
 
#ifndef __FrustumH__
#define __FrustumH__
 
#include <d3dx9.h>
 
class Frustum
{
public:
     Frustum();
     ~Frustum();
     // Call this every time the camera moves to update the frustum
     void CalculateFrustum( D3DXMATRIX ViewMatrix, D3DXMATRIX ProjectMatrix );
     // This takes a 3D point and returns TRUE if it's inside of the frustum
     bool PointInFrustum( D3DXVECTOR3 Point );
private:
     // This holds the A B C and D values for each side of our frustum.
     D3DXPLANE FrustumPlane[6];
};
#endif // __FrustumH
 
=============================Frustum.cpp============================
 
#include "Frustum.h"
#include <D3dx9math.h>
enum FrustumSide { RIGHT, LEFT, BOTTOM, TOP, FRONT, BACK };
Frustum::Frustum()
{
}
Frustum::~Frustum()
{
}
///////////////////////////////// CALCULATE FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This extracts our frustum from the projection and view matrix.
/////
///////////////////////////////// CALCULATE FRUSTUM
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void Frustum::CalculateFrustum( D3DXMATRIX ViewMatrix, D3DXMATRIX ProjectMatrix )
{
 D3DXMATRIX ComboMatrix;
 D3DXMatrixMultiply( &ComboMatrix, &ViewMatrix, &ProjectMatrix );
 //right clipping plane
 FrustumPlane[RIGHT].a = ComboMatrix._14 - ComboMatrix._11;
 FrustumPlane[RIGHT].b = ComboMatrix._24 - ComboMatrix._21;
 FrustumPlane[RIGHT].c = ComboMatrix._34 - ComboMatrix._31;
 FrustumPlane[RIGHT].d = ComboMatrix._44 - ComboMatrix._41;
 
 //normalize
 D3DXPlaneNormalize( &FrustumPlane[RIGHT], &FrustumPlane[RIGHT] );
 
//left clipping plane
 FrustumPlane[LEFT].a = ComboMatrix._14 + ComboMatrix._11;
 FrustumPlane[LEFT].b = ComboMatrix._24 + ComboMatrix._21;
 FrustumPlane[LEFT].c = ComboMatrix._34 + ComboMatrix._31;
 FrustumPlane[LEFT].d = ComboMatrix._44 + ComboMatrix._41;
 
//normalize
 D3DXPlaneNormalize( &FrustumPlane[LEFT], &FrustumPlane[LEFT] );
 
//bottom clipping plane
 FrustumPlane[BOTTOM].a = ComboMatrix._14 + ComboMatrix._12;
 FrustumPlane[BOTTOM].b = ComboMatrix._24 + ComboMatrix._22;
 FrustumPlane[BOTTOM].c = ComboMatrix._34 + ComboMatrix._32;
 FrustumPlane[BOTTOM].d = ComboMatrix._44 + ComboMatrix._42;
 
//normalize
 D3DXPlaneNormalize( &FrustumPlane[BOTTOM], &FrustumPlane[BOTTOM] );
 
//top clipping plane
 FrustumPlane[TOP].a = ComboMatrix._14 - ComboMatrix._12;
 FrustumPlane[TOP].b = ComboMatrix._24 - ComboMatrix._22;
 FrustumPlane[TOP].c = ComboMatrix._34 - ComboMatrix._32;
 FrustumPlane[TOP].d = ComboMatrix._44 - ComboMatrix._42;
 
//normalize
 D3DXPlaneNormalize( &FrustumPlane[TOP], &FrustumPlane[TOP] );
 //near clipping plane
 FrustumPlane[FRONT].a = ComboMatrix._14 + ComboMatrix._13;
 FrustumPlane[FRONT].b = ComboMatrix._24 + ComboMatrix._23;
 FrustumPlane[FRONT].c = ComboMatrix._34 + ComboMatrix._33;
 FrustumPlane[FRONT].d = ComboMatrix._44 + ComboMatrix._43;
 
//normalize
 D3DXPlaneNormalize( &FrustumPlane[FRONT], &FrustumPlane[FRONT] );
 
//far clipping plane
 FrustumPlane[BACK].a = ComboMatrix._14 - ComboMatrix._13;
 FrustumPlane[BACK].b = ComboMatrix._24 - ComboMatrix._23;
 FrustumPlane[BACK].c = ComboMatrix._34 - ComboMatrix._33;
 FrustumPlane[BACK].d = ComboMatrix._44 - ComboMatrix._43;
 
//normalize
 D3DXPlaneNormalize( &FrustumPlane[BACK], &FrustumPlane[BACK] );
}
///////////////////////////////// POINT IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This determines if a point is inside of the frustum
/////
///////////////////////////////// POINT IN FRUSTUM
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool Frustum::PointInFrustum( D3DXVECTOR3 Point )
{
 for( int i = 0; i < 6; i++ )
 {
  float x = D3DXPlaneDotCoord( &FrustumPlane[i], & Point );
  if( x < 0 )
   return false;
 }
 // The point was inside of the frustum (In front of ALL the sides of the frustum)
 return true;
}

本文出自 “小祥” 博客,请务必保留此出处http://xiaoxiang.blog.51cto.com/88051/26928

最后编辑:
作者:游戏创作者大陆